SAMPLE RUBRICS FOR ASSESSING KU CORE EDUCATIONAL GOALS Core Goal #1: Build core skills of critical thinking and quantitative literacy.

Learning Outcome 2: Upon reaching this goal, students will be able to: *Define a problem, analyze numerical information, apply mathematical principles, and integrate quantitative methods into problem solving.*

	Exceeds expectations	Expected	Satisfactory	Unacceptable
	4	3	2	1
Representation <i>Translate problem</i> <i>and represent</i> <i>solution in the</i> <i>appropriate</i> <i>mathematical form</i>	Problem is stated clearly and accurately in mathematical terms. Variables, functions, and dependencies are precisely identified. Solution is given in correct mathematical form.	Problem and solution are stated in mathematical terms, but there is some lack of precision or accuracy. Variables are identified but not all the functions or dependencies.	Mathematical formulation of problem is incomplete or is incorrect, but it conveys some aspects of the problem. Not all the variables or functions are identified.	Problem is not represented appropriately in mathematical terms.
Methodology Identify suitable methods to solve problem	Suitable method is chosen to solve the problem.	The method chosen is appropriate for a partial solution or the method applies to a closely related problem, but it does not give the complete solution of this problem.	The method chosen is incomplete or incorrect for solving this problem, but it gives some information about the problem.	The method chosen does not apply to this problem.
Computation Carry out correct calculations and/or logical steps to arrive at solution	The problem is solved using a logical sequence of correct mathematical calculations or inferences.	The solution is generally correct, but contains minor computational errors, or displays minor errors in logical sequencing.	The solution contains a significant error in calculation or logic, but generally follows the chosen method.	The calculations and/or inferences do not lead to a solution of the problem.
Interpretation Present the solution in the context of the original problem and draw relevant conclusions	The original question is answered clearly with the correct conclusions explicitly stated.	The original question is answered by referring to the mathematical solution, and some indication of a relevant conclusion is made.	There is some indication of the relation of the mathematical solution to the original question.	The mathematical answer is left without reference back to the original question, and without stating any conclusion.

To be approved for inclusion in the KU Core curriculum, course applications must include a plan to develop evidence and evaluation of student learning, documenting that students have met the criteria associated with the learning outcome that students in your course will achieve. As an aid in meeting this expectation, the committees that developed the goals, learning outcomes, and criteria of the KU Core (the satellite and transition committees) also drafted sample rubrics to provide ideas for how to evaluate what your students have learned. These are examples and should not be considered the only way to assess student learning. You may choose to use these rubrics, or you may develop your own evaluative tools. In reviewing your application, the University Core Curriculum Committee will expect to see a description of the assessment mechanism you will use.